Simulation and Analysis of Fret in the Study of Membrane Proteins

نویسندگان

  • Petr V. Nazarov
  • Vladimir V. Apanasovich
چکیده

A new formalism for the simultaneous determination of the membrane embedment and aggregation of membrane proteins is developed. This method is based on steady-state Förster (or fluorescence) resonance energy transfer (FRET) experiments on site-directed fluorescence labeled proteins in combination with global data analysis utilizing simulationbased fitting. The simulation of FRET was validated by a comparison with a known analytical solution for energy transfer in idealized membrane systems. The applicability of the simulation-based fitting approach was verified on simulated FRET data and then applied to determine the structural properties of the well-known major coat protein from bacteriophage M13 reconstituted into unilamellar DOPC:DOPG (4:1 mol/mol) vesicles. For our purpose, the cysteine mutants Y24C, G38C, and T46C of this protein were produced and specifically labeled with the fluorescence label AEDANS. The energy transfer data from the natural tryptophan at position 26, which is used as a donor, to AEDANS were analyzed assuming a helix model for the transmembrane domain of the protein. As a result of the FRET data analysis the topology and bilayer embedment of this domain were quantitatively characterized. The resulting tilt of the transmembrane helix of the protein is 18 ± 2°. The tryptophan is located at a distance of 8.5 ± 0.5 Å from the membrane center. No specific aggregation of the protein was found. The methodology developed here is not limited to M13 major coat protein and can be used in principle to study the bilayer embedment of any small protein with a single transmembrane domain. SBF for analysis of membrane protein embedment and association Chapter 2 40 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fouling Mechanism Study of Nanoporous Membrane by Ultrafitration of Whey Proteins

One of the barriers during whey filtration using UF membrane is the fouling phenomenon of the membrane, which is caused by whey proteins. In this work, the UF membranes were prepared using polysufone (PSf), dimethyl formamide (DMF), 1 wt.% poly vinyl pyrrolidone (PVP) and different concentrations of LiCl via phase inversion induced by immersion precipitation. The prepared membranes were charact...

متن کامل

Arabidopsis leaf plasma membrane proteome using a gel free method: Focus on receptor–like kinases

The hydrophobic proteins of plant plasma membrane still remain largely unknown.  For example in the Arabidopsis genome, receptor-like kinases (RLKs) are plasma membrane proteins, functioning as the primary receptors in the signaling of stress conditions, hormones and the presence of pathogens form a diverse family of over 610 genes. A limited number of these proteins have appeard in pr...

متن کامل

FRET study of membrane proteins: simulation-based fitting for analysis of membrane protein embedment and association.

A new formalism for the simultaneous determination of the membrane embedment and aggregation of membrane proteins is developed. This method is based on steady-state Förster (or fluorescence) resonance energy transfer (FRET) experiments on site-directed fluorescence labeled proteins in combination with global data analysis utilizing simulation-based fitting. The simulation of FRET was validated ...

متن کامل

Spectroscopic, Docking and Molecular Dynamics Simulation Studies on the Interaction of Etofylline and Human Serum Albumin

The purpose of this study is to investigate the interaction of Etofylline as an established drug for asthma remedy, with the major transport protein in human blood circulation, the human serum albumin (HSA). In this respect, the fluorescence and circular dichroism (CD) spectroscopy techniques, along with the molecular docking and molecular dynamics simulation methods were employed. Analysis of ...

متن کامل

The Extractability of Inner-Membrane Proteins from Salmonella typhimurium Intact Cells, Spheroplasts and Inner-Membrane Fragments by Non-Denaturing Detergents

The effect of Triton X-100, Na cholate and Tween 80 on the solubilization of integral membrane proteins in intact cells, spheroplasts and inner-membrane fragments of Salmonella typhimurium was studied. The detergents were used in various concentrations (1.6 to 64 mM) and cytochromes b and d were used as marker to monitor the solubilization of membrane-bound proteins. Results showed that no inne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006